
Semantic-based system for exercise
programming and dietary advice

Givi-Giorgi Mamatsashvili1, Konrad Ponichtera1, Miko laj Ma lkiński1,
Maria Ganzha1,2, and Marcin Paprzycki2,3

1 Warsaw University of Technology, Warsaw, Poland
2 Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

3 Warsaw Management University, Warsaw, Poland

Abstract. Growing health awareness, results in interest in healthy eat-
ing and “fitness”. While information about exercising and dieting is read-
ily accessible, it is difficult, for an inexperienced person, to find what is
right for her/him in terms of both diet and exercise. The aim of this work
is to introduce a system, based on semantic technologies, which addresses
user goals with joint exercise programs and meal suggestions.

Keywords: Ontology · Semantic technologies · Inference · Nutrition ·
Fitness · Cloud · Scalability · High Availability

1 Introduction

Recently, people are, more than ever, conscious about diet and exercise. This
results in creation of multiple “fitness tools”. Since numerous exercise programs
and diet plans can be found online (or as smartphone apps, Section 2), it seem
that there is no need for yet another application. However, while certain exercise
programs work for some, they might not work for other users. Therefore, existing
predefined programs might not be “optimal” for a given individual. Note also
that such programs ignore current health and/or experience, and fitness goals of
the user. Here, personal trainer can help, but such service can be expensive.

Overall, while human input seems needed, the question arises: how to mini-
mize it (before it becomes counter productive). Here, applications should gener-
ate exercise programs, while allowing for customization (where variants should
work as well as the original one). Similarly, diets should offer variants, as people
do not want to follow a strictly-defined diet. Hence, an application should collect
personalizing information during registration, and use it to generate advice.

Take, for example, an intermediate lifter who wishes to get stronger. Assume
that (s)he formulates goal(s), history, and characteristics. Here, a personalized
program should be developed, aimed at development muscles that (s)he speci-
fied, while suggesting low-calorie meals, to help loose weight. Moreover, if (s)he
does not like certain exercise(s), application should propose a modified program,
which still takes into account her/his preferences.

To develop needed application, domain knowledge must be captured. Here,
we have selected ontologies, to represent exercises, meals, ingredients, muscles,



2 G. Mamatsashvili et al.

etc., and their relations (in context of fitness). Existence of an ontology allows
application of semantic technologies to “ask right questions” and infer answers.

In following sections, we discuss (1) related works, (ii) design and implemen-
tation of the proposed application, and (iii) present an example how it works.

2 Related work

Let us start with fitness applications. Here, Stronglifts4 provides exercise pro-
grams and ability to track them. It suggests weights adjustments, e.g. when to
decrease the weights, during certain exercises. It is possible to log details of
workouts, and export logs to other devices. However, user preferences are not
considered. Furthermore, support for experienced lifters is limited.

Freeletics5 specializes in nutrition and fitness. Here, few features are free, but
more advanced ones require subscription. In the application, one has access to
various workouts and tools, such as nutrition guidance and a digital AI coach.

Both these apps can be a great resources for newcomers. However, they lack
adaptivity, flexibility and features for experienced users. Although Freeletics
features the digital coach, it does not combine exercises with meal suggestions.

Semantic technologies have been used in relevant contexts. Authors of [7],
discuss how to help to understand diet. Proposed agent system relies on an
ontology containing nutritional information about foods, collected from conve-
nience stores in Taiwan. Here, users “inform the system” what food they con-
sume. This information is analyzed and confronted with what is determined to
be a “healthy diet”. Overall, this is a good example how ontologies can support
better understanding of health.

Similarly, approach presented in [6] discusses use of biomedical ontology, to
support clinical decisions. Here, the ontology, containing relevant clinical infor-
mation, aids detecting irregularities, such as wrong diagnoses, unobserved dis-
eases, etc. Due to the intricacy of the problem, ontologies are used to represent
complex knowledge. This illustrates how a semantic technologies can be used to
develop an assistant, tasked with aiding the user.

3 Proposed approach

In this context, we have decided to use ontologies to represent knowledge about
physical exercises and nutrition. The proposed system consists of two main com-
ponents, related to exercise and dietary advice.

3.1 Knowledge representation

In [4], an ontology is defined as an explicit specification of a conceptualization.
Overall, ontologies formally represent knowledge, by capturing entities existing

4 https://stronglifts.com/
5 https://www.freeletics.com/



Semantic-based system for exercise programming and dietary advice 3

in a given domain, and expressing relations between them. Both, entities and
relations have names, allowing to represent contexts for any entity (“its place”
within the domain/world). Ontologies are expressed in standardized formats
(RDF, RDFS and OWL), which can be interpreted by a machine.

Our solution introduces two ontologies, representing “fitness” and “food”.
Ontology of fitness captures relations between physical exercises and muscles
(body function), while food ontology models nutritional attributes of meals.
Ontologies, forming knowledge base, are independent from the remaining parts
of the application and can be modified, without changing other components of
the system. Furthermore, stored knowledge can be shared between applications,
or exposed to the outside world (e.g. within Linked Open Data6) to be (re)used.

(a) Exercise ontology (b) Food ontology

Fig. 1: Exercise and food ontologies – top level concepts

Exercise ontology To the best of our knowledge, there are no ontologies of
physical exercises. Hence, we have developed our own (in case one exists, our
ontology can be replaced by it). It is based on a specific “exercise philosophy”,
well recognized in the community. Here, exercises are classified as antagonistic,
assistant, main or secondary, assigned into groups, and arranged in a specific
order. Moreover, different arrangements are recommended, based on users ex-
perience: beginner, intermediate or advanced. Figure 1a (left panel) illustrates

6 https://lod-cloud.net



4 G. Mamatsashvili et al.

how these concepts are represented in the exercise ontology. The top level con-
cept is DomainThing. It has two subclasses: Exercise and Muscle. The former
contains one primitive class, the NamedExercise, which has subclasses for each
exercise type. Exercise classes can have, from one to many, instances, capturing
their variations. For example, Deadlift has two instances: RomanianDeadlift and
StiffLeggedDeadlift, which are similar, but technically different. Note that this
is not a comprehensive ontology of fitness. We have developed it to the point
where its usefulness can be shown. Hence, if the proposed approach is to become
a real-world application, this ontology has to be further developed.

Fig. 2: Object properties from the exercise ontology

All instances in exercise ontology can have object properties, listed in Fig-
ure 2. Based on these properties, an exercise is inferred as belonging to one of the
following defined classes: AntagonisticExercise, AssistantExercise, MainExercise,
or SecondaryExercise. Namely, an exercise is a MainExercise if it has lower or
upper priority, represented by an attribute hasPriority, or a SecondaryExercise
if it develops a specific muscle and is secondary to a main exercise, represented
by attributes hasDevelopee and isSecondaryTo. Additionally, each MainExercise
can be classified as either Lower or UpperPriorityExercise. This division is pos-
sible thanks to a sibling class of DomainThing, called EnumThing, which has a
single subclass Priority. These rules are described as equivalence statements for
the defined classes (see, Figure 3). Here, defined classes, and object properties,
are key to the exercise program generation algorithm.

Fig. 3: Definition of a SecondaryExercise



Semantic-based system for exercise programming and dietary advice 5

Users can specify muscles they want to develop. For this purpose, we have in-
troduced the Muscle class, with four subclasses: ArmMuscle, BackMuscle, Chest-
Muscle, and LegMuscle. Each individual muscle, e.g. Triceps, is an instance of a
subclass. This allows capturing relationships between exercises and muscles.

Food ontology Several ontologies deal with food/nutrition (see, also, Sec-
tion 2). However, they are either too detailed ([2]), or focused on a “problem not
relevant in our context”. Moreover, choices like [1], do not capture all factors
needed for meal recommendations. Hence, we have created an ontology, repre-
senting meal ingredients, their calories, and how they are composed into meals.
The structure of the food ontology, is presented in Figure 1b. Here, ingredients
have been separated into: MeatIngredient, SeafoodIngredient and Vegetarian-
Ingredient classes. Each of them has subclasses. For instance, class MeatIngredi-
ent has the following subclasses: Beef, Chicken, Pork and Turkey.

Composition of ingredients into meals is expressed through instances of sub-
classes of the NamedMeal class, e.g., class Salad has instances, representing
different salads (with slightly different ingredients). Ingredients are represented
through hasIngredient property. Additionally, meal instances have an approxi-
mate number of calories, described using hasCalories property.

Again, this is a “minimal ontology” developed for the prototype, and should
be viewed as such. However, it allows to capture user preferences; e.g. availability
of number of calories, allows recommending meals appropriate to lose, maintain
or gain weight. Moreover, structure of the ontology, allows dealing with special
requirements, such as food allergies or suggesting vegan meals (see, [5]). Finally,
it can allow suggesting meals composed of ingredients present in the users kitchen
(in presence of an IoT-enabled refrigerator, see Section 4).

4 Technical aspects

Let us now briefly describe the key technical aspects of the developed system
and its components.

4.1 System description

The application should be accessible from a web browser on a desktop, or a mo-
bile device. Hence, the interface has been created with Angular framework. The
server-side part was developed in Java, using Spring Boot suite. It consists of two
modules: Core and Internet of Things (IoT ), depicted in Figure 4. Core takes
care of all aspects of the application, e.g. connection with the database, serv-
ing Angular interface, creating and authenticating users, managing session and
handling user requests. The IoT is to deal with home appliances, such as smart
refrigerators. It serves as a proxy between Core and appliance(s). Currently, it
allows only delivering individual dietary advice, where meals are composed from
ingredients found in “smart fridges”.



6 G. Mamatsashvili et al.

Server

Core IoT

Database

User

Internet

Fig. 4: Diagram showcasing individual parts the solution is composed of. In the
IoT module, vendor API connection is replaced with mocked database.

Proposed approach allows separation of business logic (Core module), from
handling external interfaces. Since modules are “independent”, if one of them
requires update (e.g. due to change in vendor API), it can be updated without
altering the other one. Currently, for testing purposes, the IoT module is emu-
lated by a database with information about ingredients “found in smart fridge”.

4.2 Application of Semantic Technologies

Presented solution uses ontologies (from two domains) and reasoning (see, Sec-
tion 3). Ontologies are represented in OWL, while operations on them use Apache
Jena7, which allows formulating SPARQL8 queries. A sample SPARQL query,
returning all exercises “assistant to classic bench press”, is depicted in Figure 5.

PREFIX sf: <http://www.stayfit.oof/ontologies/exercise#>

SELECT ?exercise

WHERE {

?exercise sf:isAssistantTo sf:ClassicBenchPress

}

Fig. 5: Sample SPARQL query, listing exercises assistant to classic bench press.

Query can be executed against the ontology graph, or obtained through an
inference process (see, Section 4.3). The latter is used for extraction of knowledge,
which was not explicitly stated during ontology creation. Moreover, Semantic

7 https://jena.apache.org/
8 https://www.w3.org/TR/rdf-sparql-query/



Semantic-based system for exercise programming and dietary advice 7

Web Rule Language (SWRL9) was used to express logical implications, inferring
additional triples. An example SWRL rule is presented in Figure 6.

sf:MainExercise(?e) ^ sf:Deadlift(?e)

-> sf:isAntagonisticTo(sf:HipHinge, ?e)

Fig. 6: Example SWRL rule. It states that if exercise e is a main exercise and a
deadlift, a hip hinge exercise will be antagonistic to e.

The left-hand side of the implication contains prerequisites for the right-hand
side to hold. In this case, if exercise e is a main exercise and is of deadlift type,
then every hip hinge exercise will be antagonistic to it.

It is possible to build not only primitive rules, but also defined ones, like
MainExercise, subclasses of which are populated during reasoning, as opposed
to primitive classes where their subclasses are found explicitly in the ontology.
This significantly increases reasoning capabilities and allows to “keep ontology
clean” by splitting reasoning into taxonomy-based and rule-based. However, mis-
use of SWRL rules might lead to reasoning problems. Hence, every rule should
be very well documented, so that its selective testing is possible.

4.3 Inference

The proposed approach depends on semantic reasoning and use of SWRL. Here,
we have found that the native reasoner built into Apache Jena does not support
SWRL. Thus we have used an external reasoner, the Openllet10 (fork of Pellet11),
capable of performing both OWL DL reasoning, and resolving SWRL rules.

4.4 Scalability and high availability

Today, monolithic solutions are being replaced by microservice-based. This re-
sults in creation of deployment methods independent from physical machines [3].
The key factor is fast launching of new instances, without excessive and time-
consuming configuration. One of possible approaches is containerization. Con-
tainers are similar to virtual machines, but are created from templates and,
usually, don’t have pre-allocated resources. In the developed solution all compo-
nents were containerized using Docker12 container engine.

Although containers do not offer the same level of isolation as the virtual ma-
chines, they became an important building block of cloud environments. How-
ever, they are still just a runtime method. They do not provide load balancing,

9 https://www.w3.org/Submission/SWRL/
10 https://github.com/Galigator/openllet
11 https://github.com/stardog-union/pellet
12 https://www.docker.com



8 G. Mamatsashvili et al.

high availability, or failure recovery. This created demand for another layer of
abstraction, for dynamic creation and management of the pool of containers
(which became known as container orchestration). For this purpose we have
decided to use Kubernetes13 orchestrator. It takes care of managing the pool
of physical container hosts and deploying the application in a highly available
manner (resilient to failure). The example of Kubernetes deployment, of the
presented solution is showcased in Figure 7.

Having the cluster configured, it is possible to deploy the whole solution at
once. Orchestrator will try to evenly schedule the pods among cluster nodes
in order to achieve the best availability in case of node failure. All the pods
communicate with each other thanks to the virtual pod network which spans
among all nodes of the cluster. User, trying to load the application, sends a
request to the global load balancer. It can be configured on the cluster or rented
from the cloud service provider. The global load balancer ensures uniform load
distribution among pods of the same type, so that no pod is flooded with excess
amount of requests.

Due to the modular structure, it is easy to add nodes to the cluster, to
increase overall computing power, and to secure availability in case of node
failure. Kubernetes tries to automatically ensure that all deployed applications
are available and reschedules pods from the dead nodes on the remaining ones.

Choosing Docker and Kubernetes, as fundamental for the deployment, re-
sulted in creating extremely scalable and reliable environment, ready for the
cloud-oriented market. What’s more, due to adoption of standardized open
source solutions, it was possible to achieve that without falling into vendor lock-
in, typical for Platform as a Service (PaaS) environments.

Obviously, such complex deployment was not needed for the demostrator.
However, we have decided to ensure that a large-scale deployment is possible.
We have tested the infrastructure and found that, as expected, it was as scalable
and as resilient as the Docker+Kubernetes pair guarantees (see, Section 5).

5 Experimental verification

The proposed application has been thoroughly tested for various usage scenar-
ios. Let us discuss a simple example of a typical usage, showcasing the main
functionality of the application, along with its current shortcomings.

5.1 Typical usage scenario

Let us assume that user is a 23 year old male, 179 cm tall, who weighs 87 kg. He
creates an account and provides the above data during registration. He also also
states that he wishes to lose weight, and have only a basic training – he has time
to train only few times per week, for a limited number of hours. Furthermore, he
identifies himself as an intermediate lifter, and chooses to train hamstrings dur-
ing deadlifts, triceps during bench presses, upper back during overhead presses,

13 https://kubernetes.io



Semantic-based system for exercise programming and dietary advice 9

Kubernetes cluster

Node Node

Pod network

Core load balancer

Core

Core

IoT

Database slave

Core

IoT

Database slave

Database master

Global load balancer Internet

User

Fig. 7: Diagram example double node Kubernetes deployment of three instances
of core module and two instances of IoT module as well as the master-slave
database. The presented IoT module usage is the testing one, where vendor API
connection is replaced with mocked database.



10 G. Mamatsashvili et al.

and quadriceps during squats. Once the registration is complete, application
generates an exercise program, which may look as in Figure 8.

Fig. 8: Example exercise program, generated for intermediate user

Proposed program includes four workouts, each of them based on specific
barbell movements: Bench Press, Deadlift, Overhead Press and Squat. Each
of these workouts includes a main exercise, primarily used the strength and
body development as it requires use of a variety of muscles. These exercises are
preceded by antagonistic exercises, i.e. exercises focusing on the muscles, which
oppose those used during the main exercise. As a third exercise, an assistant
exercise, which helps strengthening of the core for a smoother training experience
is suggested. The latter half of the workout is very similar to the former. Once
again, we have antagonistic and assistant exercises, but the main exercise is
replaced by a secondary exercise. The secondary exercise is a variation of the
main exercise, and specializes in developing the user-specified muscle group.

Main exercises have priority specified, i.e. if we declare some exercise to prior-
itize lower or upper part of the body, it can be treated as a main exercise. Here,
the inference is done by checking the property of the existence. Antagonistic
exercises are inferred through SWRL rules. For each exercise, where antagonism
can be declared there is a dedicated SWRL rule, which specifies classes of ex-
ercises. For example, hip hinge is antagonistic to each exercise e, which is also
a deadlift. Note that e is not explicitly asserted as a main exercise. This fact is
resolved by the reasoner first, so that the SWRL rule engine will be provided
with an already inferred taxonomy. Similarly in the case of assistant exercises;
each of them has a dedicated SWRL rule, which defines the assistance to some
main exercise. For instance, if some exercise prioritizes lower part of the body
(and, by definition, is a main exercise), sit ups are known to be assistant to it.
Inference of secondary exercises is also done by defining an SWRL rule for each
such exercise (having decline bench press, it is secondary to some exercise if that
exercise is main one and a bench press).



Semantic-based system for exercise programming and dietary advice 11

Muscles are individuals, divided into four classes: arm, back, chest and leg
muscles. They can be specialized by some exercises. That fact is resolved in two
ways; either by explicitly asserting that some individual exercise has specializa-
tion of an individual muscle (e.g. front squat has specialization of quadriceps) or
by using SWRL rules. Due to limitation of OWL DL, it is not possible to assert
a triple of the form individual-property-class, e.g. incline bench press (individ-
ual) has specialization (property) of chest muscle (class). As a workaround, it
is possible to apply SWRL rules, to state that if some muscle is a chest one, it
is specialized by the incline bench press. Because “is specialized by” and “has
specialization” properties are inverses of each other, having such rule defined,
the SWRL engine resolves that each incline bench press has specialization of
every asserted and inferred chest muscle, which is the desired result.

In summary, we can state that the inference on the exercise ontology worked
just as expected. An intermediate lifter has been presented with program con-
sisting of four workouts, each with relevant exercises.

Having the program generated, user is able to log the workout in the appli-
cation, as he has completed it, by stating the number of successful repetitions
of each prescribed set (see, Figure 9).

Fig. 9: The view of ongoing workout

Assuming that 8 successful repetitions took place during each set, once the
user finishes his workout, a new entry will appear in the workout history dash-
board (see, Figure 10).

Specifically, the newly-registered session will be marked as successful, due
to the fact that 8 repetitions were completed. In the case when the session was
not successful, it will still be registered in the history, along with the number of
completed repetitions.

Separately, in the meal advice view (see, Figure 11) the user is presented with
three meal choices – chicken taco, peanut butter oatmeal, and an egg roll. The
meals, shown on the screen, were all described as having less than 650 calories per
serving. This property has been used to classify them as low-calorie meals. The
suggestion is made based on the fact, that the user is attempting to lose weight
(see, above). In this case, user should be presented with only low calorie meals.
Similarly, the user who wants to gain weight would be presented with meals
inferred to be high-calorie ones (having more than 750 calories per serving)



12 G. Mamatsashvili et al.

Fig. 10: Successfully finished workout

while in case of “weight maintaining” all types of meals would be presented,
including high calorie, low calorie and those in between. It is up to the users to
control the amount of calories they consumed on the given day and reach their
daily calorie goal. This is why they are presented with a progress bar they can
fill by marking the meals they consumed.

Fig. 11: Meal advice screen, showing amount of consumed calories on a given
day, as well as other meal propositions

Each meal has a list of ingredients, along with an approximate number of
calories. When the user marks the egg roll, as the consumed meal, the distance
from reaching daily calorie goal changes from 1937 to 1374 (as egg roll has
approximately 561 calories). This means the user have already consumed the
29% of calories he should consume on the given day, in order to lose weight.

Meals are OWL individuals, of specific primitive classes, having constraints in
the form of superclasses. For example, a peanut butter oatmeal is an individual



Semantic-based system for exercise programming and dietary advice 13

of type Oatmeal, which is a subclass of a meal that has oat flakes as an ingredient.
Since ingredients are also individuals of some classes formed into a taxonomy
(for example, bacon, which is known to be meat) there is a broad possibility
for extending the ontology and program functionality to include potential user
allergies and intolerances, as well as individual preferences (see, also [5]).

Users have also access to meals that can be made by the ingredients stored
in their smart fridges (but these would be suggested in a separate view of the
application; see, also, Section 4.1).

5.2 Kubernetes’ high availability scenario

Separately, we have tested use of Docker+Kubernets. Due to Kubernetes’ health
probing mechanisms, the whole system should be immune to failures of its com-
ponents, no matter if the failure occurred on the application or machine level.

The fundamental high availability principle requires that each component of
the developed solution is available in at least two instances. It can be easily
seen in the Figure 7 that, no matter which logical or physical component of
the solution is taken down, the whole system is still going to function normally,
without users knowing that some incident has occurred on the server side.

Software failure scenario Software failure can occur in the case when ap-
plication in one of the Kubernetes’ pods crashes (e.g. due to lack of available
memory) or becomes unable to serve the requests properly (e.g. loses connection
with the database, or the IoT vendor servers). It can be easily simulated by
enforcing pod shutdown. Although Kubernetes will immediately proceed with
creation of a new pod instance, it will take some time before it “makes sure”
that the pod is working properly and won’t redirect the requests to it, in the
meantime. One can try to use the functionality of the killed pod, before the new
one becomes ready. We have tested that in the Core module pod, which died, it
was still possible to perform operations like logging in, generating new workout,
etc. Similarly, hen the IoT module pod was taken down, it was still possible to
request dietary advice, composed of ingredients from the emulated refrigerator.

Hardware failure scenario Hardware failure is more serious because, unlike
in case of software one, Kubernetes is not able to revive unavailable node; it
has to be done manually by the administrator. The failure can be simulated
either by detaching the network cable from the node, or simply by unplugging
its power cord. All the pods of the node will become detached and unable to
process forwarded requests. The control plane will probe the node and then
mark it as unavailable, which will result in all internal load balancers to omit
that node during traffic handling. In the meantime, the cluster itself will remain
operational, having at least one pod of each type deployed on the remaining
nodes. Also, Kubernetes might schedule pods from failed node on the remaining
ones, in order to enhance load balancing. When all of the mentioned things are
happening, user is not able to notice that a failure and a recovery occur on the



14 G. Mamatsashvili et al.

server side. In the worst case, if the user’s request was meant to be just handled
by the pod from the failed node, there might be a slight delay in request serving,
while the cluster’s internal mechanisms redirect the requests to the working node.
The delay is linearly decreasing as the amount of worker nodes of the cluster
increases, because the probability that user will be served by that particular
node decreases proportionally to the cluster’s size.

It is worth noting that administrator’s intervention is required only in the
case of bare-metal cluster, deployed manually on physical machines. In case when
the cluster is provisioned by the cloud provider, recovery from the node failure
is going to be automated, just as in case of software pod failure.

Maintenance scenario Cluster nodes might also need a maintenance, which
requires disabling their pod scheduling capabilities and gracefully taking down
all the already working pods. This process is called node cordoning and draining.
Nodes that are shut down are treated just like failed ones, with the exception
that Kubernetes is not probing them to check if they are available again. During
node draining, each evicted pod has its copy created (on one of the remaining
nodes) so that user is not able to notice that some server instances are being
shut down. Once the maintenance is complete, nodes can be uncordoned and
reattached to the cluster, which will proceed with pod scheduling.

In summary, all performed tests illustrated that the Docker+Kubernets in-
frastructure is capable of efficiently “protecting” the running application.

5.3 Shortcomings and limitations

One of the the main assumptions, behind the developed application is to mini-
mize the human involvement in providing fitness and dietary advice. This is to
be achieved by utilizing semantic technologies and ontologically capturing do-
mains of interest into a semantic knowledge base. However, the decision-making
is not perfect. While the generated exercise programs might be efficient in terms
of achieving one’s weight goal, user satisfaction cannot be guaranteed, as there
are far too many factors that the application cannot foresee (being in its current
form). It is also worth noting that there is no way to guarantee accuracy of daily
caloric intake provided by the system, as every person is unique. This can cause
the numbers to be significantly off for some people. This will also require users to
re-adjust the number of calories, by experimenting with the suggestions, which
basically means human-involvement the application tries to get rid of int he first
place.

However, most importantly, the application is not universal. The exercise
ontology, used in it, adopts a certain exercise philosophy and, while being capable
of generating numerous programs, it lacks variety that users might be looking
for. Moreover, users may believe that a different exercise philosophy would be
better for them. This problem can be solve, by replacing fitness ontology by a
different one (with the remaining parts of the application unchanged).

As noted, current version of food ontology does not take account food aller-
gies, or strict diets, as its based solely around the idea of calories and classifying



Semantic-based system for exercise programming and dietary advice 15

food based the calorie count. Acknowledging these limitations, it is crucial to
take into account that this application is only a prototype and can be improved
in numerous ways. Furthermore, it was designed in such a way that incorpo-
rating such changes should be relatively easy, e.g. due to modular design and
extensible nature of ontologies.

6 Concluding remarks

In this paper we have presented a semantic-based system for exercise-programming
and dietary advice. A demonstrator has been developed, in order to test the
presented solution and to better understand the needs of the users. The system
successfully generated exercise programs, based on provided preferences, while
also suggesting some meals that the user could be interested in.

Shortcomings and limitations discussed above, will be prioritized in the up-
coming versions. Moreover, the system can be further improved by adding more
knowledge to the ontologies, more specifically, we aim to improve the food on-
tology so that it can satisfy needs of various users. This can be planned by
considering the diets the users are following, such as plant-based or ketogenic
diets, or the foods they are unable to consume due to certain intolerance and
allergies. The system can also be integrated with personal assistants like Amazon
Alexa or Google Assistant for convenience. Our goal is to expand and further
improve the solution as the time goes, which is made possible thanks to the
implementation and the technologies used.

References

1. Pizza ontology. https://protege.stanford.edu/ontologies/pizza/pizza.owl
2. Celik, D.: Foodwiki: Ontology-driven mobile safe food consumption system. TheSci-

entificWorldJournal 2015, 475410 (07 2015). https://doi.org/10.1155/2015/475410
3. Chen, G.: The Rise of the Enterprise Container Platform. IDC White Paper (July

2018)
4. Gruber, T.R.: A translation approach to portable ontology specifications.

Knowl. Acquis. 5(2), 199–220 (Jun 1993). https://doi.org/10.1006/knac.1993.1008,
http://dx.doi.org/10.1006/knac.1993.1008

5. Ponichtera, K., Ma lkiński, M., Sawicki, J., Ganzha, M., Paprzycki, M.: Fusing in-
dividual choices into a group decision with help of software agents and semantic
technologies. in press (2019)

6. Riaño, D., Real, F., López-Vallverdú, J.A., Campana, F., Ercolani, S., Mecocci,
P., Annicchiarico, R., Caltagirone, C.: An ontology-based personalization of health-
care knowledge to support clinical decisions for chronically ill patients. Journal of
Biomedical Informatics 45(3), 429 – 446 (2012)

7. Wang, M.H., Lee, C.S., Hsieh, K.L., Hsu, C.Y., Acampora, G., Chang,
C.C.: Ontology-based multi-agents for intelligent healthcare applications. J.
Ambient Intelligence and Humanized Computing 1, 111–131 (06 2010).
https://doi.org/10.1007/s12652-010-0011-5


